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Abstract The atmospheric response to variations in tropical latent heating extends well beyond its
source region, and therefore it is thought that a reduction of tropical forecast errors should also benefit
subsequent forecasts over the extratropics. This relationship is evaluated using a conditional skill analysis
applied to subseasonal reforecasts from the National Centers for Environmental Prediction Coupled
Forecast System and the European Centre for Medium-Range Weather Forecasts Integrated Forecast
System. It is shown that there is enhanced or attenuated skill in Northern Hemisphere Weeks 2–4 forecasts
when tropical short range precipitation forecasts are “good” or “poor,” respectively. This conditional skill is
modulated by both El Niño Southern Oscillation and the Madden and Julian Oscillation, particularly in
the Integrated Forecast System. The results presented here indicate that midlatitude Weeks 2–4 predictive
skill would benefit from improvements in Week 1 tropical performance, particularly for the National
Centers for Environmental Prediction system.

1. Introduction
Tropically forced extratropical teleconnections are of practical interest because they represent a pathway for
tropical forecast errors in numerical models to propagate to higher latitudes, where they can affect subse-
quent midlatitude forecasts. The fact that operational extratropical forecasts are substantially more skillful
than those for the tropics is well documented (e.g., Dias et al., 2018; Zhu et al., 2014). Over the last few
decades the inference, through observations and models, of a remote impact of tropical forecast errors has
motivated prediction centers around the world to improve their tropical performance (e.g., Vitart, 2014;
Xiang et al., 2015), where errors from the short (synoptic) to the extended (weekly to monthly) range have
been largely attributed to physics related to clouds and precipitation (Goswami et al., 2017; Hirons et al.,
2013). These tropical forecast improvements, in principle, hold the promise that midlatitude extended fore-
casts can draw more skill from lower latitudes than they could in the past. While midlatitude extended range
forecasts have improved substantially over the last couple of decades, these advancements stem from many
factors beyond remote tropical influence including, for example, improved model physics, increased model
resolution, better initialization, and the use of ensembles (Bauer et al., 2015). Therefore, it might be argued
that the skill originating from the tropics still lies in the noise when compared to the current state of midlat-
itude predictive skill. The main goal of this study is to investigate, through the use of existing hindcast data
sets, to what extent current extended midlatitude forecasts are able to draw skill from the tropics, including
characterizing typical lead times involved as well as potential dependencies on the tropical low frequency
basic state.

Tropical-to-extratropical teleconnections originate with tropical precipitation, where the associated convec-
tive heating is balanced by upward motion leading to upper level divergent flow. This divergence anomaly is
seen to be the primary driver of the so-called “Rossby wave source” through vortex stretching, and planetary
and relative vorticity advection by the divergent horizontal flow (Hoskins & Karoly, 1981; Sardeshmukh &
Hoskins, 1988). These studies showed that subtropical Rossby wave sources are the most effective way to
excite propagation of Rossby wave energy from low to high latitudes where they can impact weather, and that
the sources are most efficiently produced within regions of strong relative vorticity gradients associated with
the extratropical westerly flow, such as found in the vicinity of the wintertime subtropical jets. The midlati-
tude response to tropical heating is very rapid in both theory and models, with a substantial response even
after 2 days, with its character depending on the season and frequency of the tropical forcing (Branstator,
2014; Matthews et al., 2004; Newman & Sardeshmukh, 1998). Over time the response initially spreads
poleward and eastward, with lower frequency forcing such as that associated with the Madden and Julian
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Table 1
Summary of ECMWF and NCEP Model Configuration

NCEP ECMWF
Model CFSv2 IFS CY43R3
Range (days) 44 46
Horizontal resolution ∼100 km 16 km up to day 15

and 31 km after day 15
Vertical levels 64 91
Top of model (hPa) 0.02 0.02
Frequency daily 2× a week
Length 1999–2010 past 20 years
Ocean Coupling yes yes

Note. ECMWF = European Centre for Medium-Range Weather Forecasts;
NCEP = National Centers for Environmental Prediction; CFSv2 = Climate
Forecast System version 2; IFS = Integrated Forecast System.

Oscillation (MJO) and El Niño Southern Oscillation (ENSO) being particularly effective at producing tele-
connections (Berbery & Nogues-Paegle, 1993; Hsu, 1996; Liu et al., 2016; Roundy et al., 2010). Of particular
relevance is that even short-lived tropical convective pulses might also have a systematic imprint on sub-
sequent midlatitude weather days and weeks later (Branstator, 2014, their Figures 3 and 5). A relationship
between low and high latitude forecast skill is, therefore, expected across a wide range of timescales based
on our understanding of these teleconnections. On the other hand, skillful prediction of the midlatitude
response to tropical forcing also relies strongly on accurate representation of tropical heating and its vertical
structure, along with nonlinearities and interactions with the background flow (Ambrizzi & Hoskins, 1997;
Sardeshmukh & Hoskins, 1988).

Besides theoretical arguments, another reason to anticipate a relationship between tropical and extratropical
forecast errors stems from what are referred to as “relaxation experiments” using forecast models (Ferranti
et al., 1990; Hansen et al., 2017; Jung et al., 2010; Klinker, 1990). This approach involves nudging forecasts
toward analyses or reanalyses over a tropical region, while allowing the model to run freely elsewhere. By
comparing nudged to global free running forecasts, these studies have generally shown that midlatitude
forecasts are improved in association with reducing tropical forecast errors. Jung et al. (2010), for example,
showed that Weeks 2–4 forecast errors over the North Pacific and North America in particular are reduced
by tropical nudging. While relaxation seems to be an effective technique to demonstrate global impacts of
poor representation of the tropics, it is limited because it artificially accounts for both the predictable and
unpredictable portion of tropical phenomena. In addition, these experiments tend to be performed at rel-
atively low resolution in comparison to what is used in current subseasonal prediction systems. For these
reasons, the estimates of contributions from tropical errors to extratropical errors from relaxation experi-
ments must be interpreted as an upper bound that is unlikely to be achieved. This further motivates our goal
here of estimating the impacts of tropical forecasts on midlatitude subseasonal predictive skill in existing
forecast model runs.

The Subseasonal to Seasonal (S2S) prediction project database (Vitart et al., 2017) offers an unprecedented
opportunity to statistically assess the relationship between tropical and extratropical forecast errors. For
conciseness, we focus on the National Centers for Environmental Prediction (NCEP) and European Centre
for Medium-Range Weather Forecasts (ECMWF) subseasonal reforecasts and on the October–March period.
The two systems were chosen because of their contrasting behavior in the tropics (see section 3). The analysis
presented here builds on the methods used in Dias et al. (2018) and could be easily expanded to other regions,
seasons, and models.

2. Data
2.1. S2S Reforecasts and Verification Data Sets
NCEP and ECMWF reforecasts are archived in the S2S database (Vitart et al., 2017) and detailed model
information can be found online (at https://confluence.ecmwf.int/display/S2S/Models). Table 1 displays a
summary of the ECMWF and NCEP model configurations used in this study. At NCEP, reforecasts were
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produced from a fixed Climate Forecast System version 2 (CFSv2) configuration for the period of 1999–2010
with daily initializations. At ECMWF, reforecasts are produced “on the fly” using the latest version of Inte-
grated Forecast System (IFS) with twice a week initializations. Another difference, as shown in Table 1, is
that the NCEP reforecasts are produced at much coarser resolution than ECMWF reforecasts.

We primarily use the 624 initial times that are common to both models, which correspond to twice a week
initializations from 1999 to 2010 during October through March. The entire NCEP (ECMWF) S2S data set
includes 4,380 (1,976) reforecasts. All model output are regridded to 1.5◦ × 1.5◦ before storage in the S2S
database, which is the resolution we use here. The variables included in this analysis are daily average pre-
cipitation and instantaneous daily values of geopotential heights at 500 hPa (z500) and meridional winds at
200 hPa (v200).

Precipitation forecast skill is evaluated against the Global Precipitation Measurement (GPM) satellite 3B42
product (Huffman et al., 2007), which is available at 3-hourly resolution as area averages of precipitation rate
on a 0.25◦ grid between 50◦S and 50◦N. ERA-Interim reanalysis (Dee et al., 2011) is used to verify z500 and
v200. GPM is not directly assimilated in either systems and the results shown here are not overly sensitive
to the specific reanalysis product used for verification. Both ERA-Interim reanalysis and GPM verification
data sets are regridded to the S2S grid.

2.2. MJO and ENSO Indexes
To characterize the MJO, we use the OLR-based MJO index (OMI), which is designed to identify the MJO
convective signal (Kiladis et al., 2014). We define MJO active periods as cases where OMI is above its
upper tercile (1.5) and inactive when it is below the lower tercile (0.85), where thresholds are calculated
using all October–March OMI values from 1979 to 2017. Sensitivity tests of these thresholds and MJO
index used suggest that our main conclusions are robust to how we define MJO activity (not shown). The
ENSO state is assessed according to the Oceanic Nino index (http://origin.cpc.ncep.noaa.gov/products/
analysis_monitoring/ensostuff/ONI_v5.php) where warm/cold periods are based on a threshold of ±0.5 ◦C.
The conditional sample sizes using the thresholds mentioned above are the following: 221/198 MJO
active/inactive cases and 192/165/267 ENSO neutral/warm/cold. We note that our mean results might be
overly influenced by cold ENSO events since they dominate the 1999–2010 period.

3. Measures of Predictive and Conditional Skill
We report our conditional skill results using anomaly pattern correlation coefficients (APC), defined as

APC(IN,LT) =
cov(X ′

𝑓
,X ′

o)

std(X ′
𝑓
)std(X ′

o)
. (1)

The covariance (cov) and standard deviation (std) are calculated using reforecasts and verification anomalies
(X ′

𝑓
,X ′

o) from all grid points that lie within specified regions, at a fixed initial time (IN) and at each forecast
lead time (LT). Anomalies are calculated by removing the lead time dependent first three harmonics of the
mean seasonal cycle from each model. The mean seasonal cycle is calculated by filling any missing calendar
day with the monthly mean value. Additional testing indicate that the seasonal cycle is reasonably well
defined given the available reforecast record. We apply the same method to calculate the seasonal cycle and
anomalies for all data sets used here.

The tropical region where the APC is calculated is defined as all longitudes between 15◦S and 15◦N, which
includes most of the regions of intense tropical convection during October–March. Reducing the tropical
region to 10◦S–10◦N does not affect our conclusions. The NH verification region is defined as all longitudes
between 30 and 50◦N. The APC calculation yields a distribution of APC values for each region and at each
lead from Day+1 to +44. For a more continuous transition from short to extended lead times, we also adopt
the methodology from Zhu et al. (2014) and others, where the forecast lead time at Day “x” uses an averaging
window of “x” days and those are denoted 1d1d, 2d2d, and so forth. Here 2d2d skill corresponds to the
skill of the average Day+3/Day+4 prediction and 1w1w is the skill of the average Week 2 prediction (see
schematic in Figure 1 from Zhu et al., 2014). We have computed other verification measures including root
mean square error, bias, equitable threat score, and fractions skill score and found that our conclusions
in terms of relative and conditional skill regarding the CFSv2 versus IFS and tropical versus extratropical
regions are not overly sensitive to the metric used.
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Figure 1. Seamless anomaly pattern correlation (APC) during October–March for (a) tropical precipitation (TR pr),
(b) NH precipitation (NH pr), (c) tropical 200 hPa meridional wind (TR v200), (d) NH 200 hPa meridional wind (NH
v200), and (f) NH 500 hPa geopotential height (NH z500). Panel (e) shows APC during April–September for NH
500 hPa geopotential height (NH z500). Thick lines display the APC median over all common CFSv2 (blue) and IFS
(red) reforecasts. Shading is similar, except that for the upper and lower quartiles.

Reforecast initial times are split depending on whether the tropical APC at a fixed lead/window is below
(above) the lower (upper) quartile (“poor” vs “good” tropical forecasts) following the approach from Dias
et al. (2018). We apply this method to “seamless” APC values where we compare conditioned to mean values.
Since we are interested in tropical forecast errors associated with misrepresentation of latent heating sources,
the skill of the tropical forecast is measured by the tropical precipitation APC. The skill of NH forecasts
is measured by precipitation, z500, and v200. Throughout the paper, confidence intervals are constructed
using bootstrapping, where the lower and upper intervals of each measure are defined as the 5th and 95th
percentiles of their distributions calculated from 1,000 resampled realizations.

4. Conditional Skill Analysis
An overview of the predictive skill of each model out to 3w3w (roughly Week 4) over the tropics for precip-
itation and v200 and over the NH for precipitation, v200 and z500 can be seen in Figure 1. As demonstrated
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Figure 2. As in Figure 1, except that panels show normalized conditional skill (D; see definition in section 4) for
reforecasts where 2d2d tropical precipitation APC is above the upper quartile (solid) and below the lower quartile
(dashed). The solid and dashed lines represent the median D, over 1,000 realizations using random sampling with
replacement and shading shows the 5% and 95% percentiles of the distribution. Only common dates common CFSv2
(blue) and IFS (red) reforecasts are used.

in a recent study (Janiga et al., 2018), Figures 1a and 1c show substantially higher tropical skill in the IFS
than in the CFSv2. This is also the case for daily APC values (not shown), where the tropical precipitation
APC decorrelation, as measured by the number of days to drop to half of the Day+1 APC, is 3.5 in the CFSv2
versus 9 days in the IFS. Although the IFS also tends to outperform the CFSv2 skill by 15% to 20% in the
NH, the differences are much less accentuated than in the tropics (Figures 1b, 1d, and 1f). These relative
differences between tropics and extratropics are seen in the period of April–September as well (Figure 1e).
The contrast in model performance makes the comparison between tropical and NH skill more intriguing
because the IFS has a better representation of tropical convective variability than the CFSv2, which might
have implications for how tropical-extratropical interactions are handled. We also note that the differences
between the IFS and CFSv2 are larger when APC values are averaged over the Northern Pacific and North
America (not shown), which are regions known to be sensitive to tropical forecast errors (Jung et al., 2010).
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Figure 3. (a) shows the lead/lag cross-correlation for tropical precipitation and NH z500 (thick lines) and the lead/lag
autocorrelation for NH z500 (dashed) and tropical precipitation (dotted). Positive (negative) lead/lag mean that tropical
precipitation leads (lags) NH z500. (b)–(f) are similar to Figure 2c, except that all reforecasts available are included
where (c)–(f) are further conditioned on periods of active/inactive MJO (c and d) and warm/neutral ENSO (e and f).
MJO = Madden and Julian Oscillation; ENSO = El Niño Southern Oscillation.

Figure 2 shows how tropical and NH APC evolve with lead/window when the 2d2d tropical forecasts are
good or poor in comparison to the mean. The conditional skill is displayed as a normalized difference (D)
between conditional and unconditional seamless APCs defined as

D =
APCcond − APC

APC
. (2)

Therefore, if D < 0 (D > 0), the conditional forecast skill is worse (better) than the mean skill over the
analyzed period. The choice of conditioning on tropical precipitation APC for lead/window 2d2d is based
on the compromise between short range skill and its dependence on initial conditions, but results are not
too sensitive to small changes on this parameter. Figures 2a and 2c show uniformly positive (negative) D
values in the case of good (poor) 2d2d tropical precipitation and v200, where D in the case of tropical precip-
itation (Figure 2a) peaks at 2d2d by design. This is not too surprising since one would expect 2d2d skill to
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be positively correlated with nearby lead/windows and upper level tropical flow errors to be correlated with
errors in precipitation. These differences are also seen when conditioning on 1d1d and when using only the
overlapping dates of good and poor forecasts across the two models (not shown). In the case of both pre-
cipitation and v200, the CFSv2 conditional forecast skill is further from the unconditional skill out to 4d4d.
This initial skill difference could be due to the fact that since the IFS has a better representation of the trop-
ics, there is both less of an absolute difference between good and poor tropical performance, and less skill
dependence on the initial conditions. The peak at 2w2w in the IFS v200 might be a sampling issue since it
does not appear when forecasts from 2011 to 2017 are included (not shown).

The evolution of precipitation, v200, and z500 skill in the NH is especially interesting because in both mod-
els, the pick up in conditional skill is delayed, starting at about lead/window 3d3d (Figures 2b, 2d, and 2f),
which would roughly coincide with the early stages of the estimated Rossby response time discussed above.
While the amplitude of the pick up/drop off in skill depends on the thresholds that define the performance
of the 2d2d tropical forecast, its timing and the relative amplitude between models are reasonably robust.
Based on Figure 2, it appears that CFSv2 NH predictions are more strongly modulated by short range tropi-
cal precipitation forecasts than in the IFS. Assuming that teleconnections patterns are handled similarly in
both systems, this difference in amplitude can be interpreted as an indication that the IFS is already tapping
its superior tropical skill for tropical-to-extratropical teleconnections, whereas the CFSv2 could do better if
the tropics were improved. While this might be true for the period of 1999–2010, when the entire record of
forecasts is included, the pickup in the amplitude of NH skill in both models is similar (Figure 3b). Because
CFSv2 reforecasts are not available for the period of 2011–2017, it is unclear whether this is a sampling issue.
Inclusion of all available forecasts as opposed to only the overlapping period between IFS and CFSv2 also
makes the pick up/drop off at 4d4d in z500 even more pronounced (Figure 3b), and the drop off at 3w3w for
z500 and v200 (not shown) in the CFSv2 disappears. Note also that the increase/decrease in skill during the
NH warm season is not seen in Figure 2e, which confirms the expectation that the basic state influences the
Rossby wave source (e.g., Newman & Sardeshmukh, 1998).

The differences in NH conditional skill across variables are larger at longer lead/windows, when the uncer-
tainty in the estimates is also larger. In general, while the tendencies of the conditional skill at longer
lead/window are suggestive, those results have to be interpreted with caution because forecasts are not par-
ticularly skillful based on APCs in these ranges (Figures 1b and 1d–1f), and also samples are relatively small.
We have calculated the reciprocal conditional skill to investigate NH forecasts influences in the subsequent
tropical skill, which shows that early lead NH APCs are not associated with changes in later lead tropical
APCs. Similarly, we have not found an analogous relationship in the Southern Hemisphere cool season.
However, that the relationship is not revealed by the hemispheric APC analysis, does not mean that there
are not particular regions in the extratropics that influence particular tropical regions. For example, there
is evidence that tropical Eastern Pacific variability is modulated by higher latitudes when the upper tropo-
spheric “Westerly duct” (Webster & Holton, 1982) is active (e.g., Matthews & Kiladis, 2000). A remarkable
feature of Figure 2 is the relative symmetry between conditional skill on either good or poor tropical perfor-
mance, and these symmetries are even stronger when entire record of IFS and CFSv2 reforecasts are used.
This further supports the hypothesis that tropical skill systematically modulates NH skill at extended lead
times.

We also calculate the lead-lag correlations between tropical and extratropical skill and contrast those values
to the NH lead-lag autocorrelation. The idea is that at a fixed lead-lag, a cross-correlation that is larger than
the autocorrelation suggests that NH skill at that lead is more related to processes originating within the
tropics than in the NH. We first examine the NH z500 APC autocorrelation values (dashed lines in Figure 3a),
and note that they are very similar for the IFS and CFSv2. The solid lines show the cross-correlation between
NH z500 APC and tropical precipitation APC, and in both cases the cross-correlation with tropical precip-
itation APC is larger than the autocorrelation at longer positive lead times. The crossing occurs earlier for
the IFS than for the CFSv2, and this is also seen when looking at daily APCs (not shown). The asymmetry of
the lead-lag correlation implies that the converse argument is not true, such that, at longer lead/windows,
the correlations between tropical precipitation and NH z500 APCs are less than the tropical precipitation or
z500 autocorrelation (dotted and dashed lines in Figure 3a). We found that these relationships are similar
when using tropical and NH v200. Overall, the lead-lag correlation is consistent with the conditional skill,
again suggesting that in both models NH predictive skill is related to the performance of earlier lead tropical
forecasts.
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One way to investigate how tropical low frequency variability influences the conditional skill seen in
Figures 2c and 2d is to further condition good and poor forecasts on MJO activity or ENSO phase. The main
limitation of this analysis is the relatively short extent of the overlapping reforecast record, which already
leads to small sample sizes even without considering MJO and ENSO. Since the uncertainty of our estimates
when also controlling for MJO activity and ENSO phase is extremely large when using only common dates,
the conditional skill estimates in Figures 3c–3f include all available October–March reforecasts. The caveat
is that comparisons between the models are complicated by the fact that the CFSv2 period includes only
a subset of the MJO and ENSO events from the IFS period. Despite the unavoidable limitations regarding
sample sizes and periods, there are a number of interesting features related to how ENSO and MJO affect
conditional skill:

• During active MJO periods, the IFS Weeks 2–4 NH z500 APCs are better than average regardless of the
2d2d tropical precipitation performance. In contrast, the CFSv2 enhanced/attenuated skill depending on
2d2d tropical APC is nearly insensitive to MJO active periods.

• MJO inactive periods do not seem to affect the tropical/extratropical Weeks 1–2 skill relationship in
either systems. Weeks 3–4 NH z500 performance is worse than average when 2d2d tropical precipitation
skill is poor. During MJO inactive periods, Week 3 NH z500 skill is not sensitive to when 2d2d tropical
precipitation skill is good.

• ENSO warm phases generally amplify positive/negative differences seen in Figure 3b. When ENSO is
neutral, conditional skill during Weeks 1–2 behaves similarly to when all ENSO phases are included. In
contrast, Weeks 3–4 conditional skill is asymmetric in that changes are primarily seen when 2d2d tropical
precipitation skill is poor. It also appears that, when ENSO is neutral, the IFS Week 4 NH z500 forecasts
are less skillful regardless of the 2d2d tropical precipitation APC.

Overall, when comparing different variables and thresholds, it appears that the evolution of conditional
skill in the IFS is more sensitive to the MJO and ENSO than in the CFSv2, possibly because the IFS tropical
variability is better represented, and also as indicated by its better overall tropical skill in comparison to the
CFSv2.

5. Summary and Conclusions
As discussed in section 1, there is an expectation from both theory and idealized modeling for extended
(weekly to monthly) extratropical predictive skill in numerical forecast models to be influenced by tropical
forecast errors at earlier lead times. We apply a conditional skill analysis to evaluate this relationship in S2S
predictions from the NCEP-CFSv2 and ECMWF-IFS. In terms of absolute skill, the CFSv2 tends to under-
perform when compared to the IFS at both low and high latitudes, but these differences are much larger in
the tropics (Figure 1). With respect to conditional skill, when comparing the same set of initial times, our
analysis suggests that in both systems, NH cool season predictions beyond a few days lead time tend to be
better when the short range tropical forecast is good, and vice-versa. CFSv2 NH Weeks 2–4 predictions are
more sensitive to short range precipitation forecasts in the tropics in comparison to the IFS (Figures 2b, 2d,
and 2f). These differences in sensitivity could be due to the fact that the IFS performs better in the tropics
and therefore there is less of a difference between good and poor tropical skill than in the CFSv2; however,
other factors such as model resolution and physics could be important as well because they could affect the
relative importance of tropical-to-extratropical forecast error propagation.

The systematic relationships found between tropical precipitation and NH cool season predictive skill are
seen in z500, v200, and even in precipitation. Therefore, our results suggest that subseasonal forecasts could
benefit from model improvements leading to a reduction of tropical forecast errors. Interestingly, based on
the tropical predicability limits estimated by Ying and Zhang (2017) such improvements might be possible.
One caveat of the present analysis is the limited size of overlapping reforecasts between IFS and CFSv2. This
sample size sensitivity is illustrated by comparing the IFS conditional skill using 1999–2010 (Figure 2f) to
1998–2017 (Figure 3b), which shows that conditional skill is sensitive to the period of analysis. By testing
thresholds to characterize tropical performance and comparing different variables, we found that at least
the timing of the delayed skill pick up/drop off, if not its amplitude, is reasonably robust across different
periods.

Despite issues with sample sizes, the MJO/ENSO modulation of conditional skill seems consistent with the
fact that the IFS performs better in the tropics. For instance, when the MJO is active, IFS Weeks 3–4 z500
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APCs are better than average, regardless of tropical precipitation earlier lead performance. That could be
because, as shown by many previous studies (see Stan et al., 2017), the NH draws extended range skill from
the MJO persistent large-scale convective signal, therefore the impact of tropical short range forecast perfor-
mance is less noticeable when the MJO is active. The MJO is a known weakness of the CFSv2 (Hendon et al.,
2000; Janiga et al., 2018), where we found a relative insensitivity of conditional skill during MJO active peri-
ods. While not the focus here, we did not find an analogous relationship during April–September between
tropics and Southern Hemisphere, but it is possible that such relationship would appear over particular
longitudinal sectors. Another interesting result is that modulations of subsequent NH skill, particularly at
Week 2, are seen during MJO inactive and ENSO neutral phases. That is, other tropical processes besides
the MJO and ENSO, such as higher frequency tropical waves, might also play a role on how much remote
skill from the tropics can be tapped.

Detailed predictability studies are certainly needed to better understand and characterize how extratropical
predictive skill depends on multiscale tropical variability. The relaxation experiments discussed in section
1 are one way to further evaluate these dependencies; however, they are computationally expensive in com-
parison to our conditional skill analysis of long records of reforecasts. Our hope is that we have provided
an alternate approach here that might be helpful as an initial investigative tool of predictive skill associ-
ated with tropical-to-extratropical teleconnections that can then be used to guide the design of predictability
experiments.
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